+0

# Sa fait quoi =(2x-3)puissanve 2-(x+3)puissance 2 svp

0
375
1

Sa fait quoi =

(2x-3)puissance 2 - (x+3)puissance 2

svp

Guest 8 mai 2015
Trier:

#1
+886
0

$${\left({\mathtt{a}}{\mathtt{\,\small\textbf+\,}}{\mathtt{b}}\right)}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{ab}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}}$$

$${\left({\mathtt{a}}{\mathtt{\,-\,}}{\mathtt{b}}\right)}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{ab}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}}$$

Donc:

$${\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}} = \left({\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}\right){\mathtt{\,-\,}}\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}\right)$$

=$$\left({\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}\right){\mathtt{\,-\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}$$

=$${\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}{\mathtt{\,-\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{9}}$$

=$${\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}$$

x étant un facteur commun, on peut factoriser:

$${\mathtt{x}}{\mathtt{\,\times\,}}\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}\right)$$

EinsteinJr  20 mai 2015

### 2 Utilisateurs en ligne

Nous utilisons les cookies pour personnaliser le contenu et les annonces, de fournir des fonctionnalités de médias sociaux et d'analyser notre trafic. Nous partageons également des informations concernant votre utilisation de notre site avec nos partenaires médias sociaux, la publicité et d'analyse.  Voir les détails