Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
299
4
avatar

Let f(x) be the polynomial f(x) = x^7 - 3x^3 + 2.

 

If g(x) = f(x+7), what is the sum of the coefficients of g(x)?

 Jun 15, 2022
 #2
avatar+130503 
+1

g (x) =  f (x + 7) =    (x + 7)^7  - 3(x + 7)^3  + 2    =

 

1x^7 + 49 x^6 + 1029 x^5 + 12005 x^4 + 84032 x^3 + 352884 x^2 + 823102 x + 822516

 

Just add the   red integers to get your answer

 

cool cool cool

 Jun 15, 2022
 #4
avatar+9676 
+1

Alternative solution:

 

The sum of coefficients of a polynomial p(x) is actually just p(1).

 

Proof: (You can omit this part if you just want the answer instead of the explanation.)

Let p(x)=anxn+an1xn1+an2xn2++a2x2+a1x+a0.

Then p(1)=an1n+an11n1++a11+a0=an+an1+an2++a1+a0, which is exactly the sum of coefficients of p(x).

 

Therefore, we just find g(1)=f(1+7)=f(8). The sum of coefficients of g(x) is f(8)=87383+2.

 Jun 16, 2022

1 Online Users

avatar