Bosco

avatar
Nom d'utilisateurBosco
But1238
Membership
Stats
Questions 0
Réponses 698

 #1
avatar+1238 
+1

 

When the same constant is added to the numbers 60, 120, and 160, a three-term geometric sequence arises. What is the common ratio of the resulting sequence?    

 

In a geometric progression the ratio between succeeding numbers is the same.   

 

Therefore                                            120 + x         160 + x    

                                                            ––––––   =   ––––––     

                                                             60 + x          120 + x     

 

Cross multiplying                                 (x + 120)(x + 120)  =  (x + 60)(x + 160)     

                                                             x2 + 240x +14,400  =  x2 + 220x + 9600       

 

Subtract x2 from both sides                  240x + 14,400  =  220x + 9600    

Subtract 220x from both sides                20x + 14,400  =  9600   

Subtract 10,000 from both sides                            20x  =  – 4800       

 

                                                                                   x  =  – 240    

Plugging – 240  

into the first ratio                                        – 120   

                                                                 –––––––  =  0.6666 • • •       

                                                                   – 180   

Plugging – 240 

into the second ratio                                   – 80  

                                                                 –––––––  =  0.6666 • • •     

                                                                   – 120              

The common ratio, after     

adding the constant, is                               0.6666 • • •    (or  2/3 if you prefer)     

.    

4 nov. 2024
 #1
avatar+1238 
0
2 nov. 2024
 #1
avatar+1238 
0

 

Let $IJKLMN$ be a hexagon with side lengths $IJ = LM = 3,$ $JK = MN = 3,$ and $KL = NI = 3$. Also, all the interior angles of the hexagon are equal. Find the area of hexagon $IJKLMN$.    

 

The sides are equal and the angles are equal.    

That means the hexagon is a regular hexagon.    

 

                                                                                               3 sqrt(3)    

The area of a regular hexagon in terms of its sides is   A  =  ––––––––  x  a2  where "a" is a side.    

                                                                                                     2    

 

                                                                                       A  =  ( 3 x sqrt(3) x 32 ) / 2       

                                                                                       A  =  ( 27 sqrt(3) ) / 2    

Is that good enough or do you need a number.     

                                                                                       A  =  ( 27 x 1.732 ) / 2     

                                                                                       A  =  23.383    

.   

1 nov. 2024