We simplify all of these expressions.
A:
\(A=\frac{2^{\frac{1}{2}}}{4^{\frac{1}{6}}}\\ A=\frac{2^{\frac{1}{2}}}{(2^2)^{\frac{1}{6}}}\\ A=\frac{2^{\frac{1}{2}}}{2^{\frac{1}{4}}}\\ A=2^\frac{1}{4}\)
B:
\(B=\sqrt[12]{128}\\ B=\sqrt[12]{2^7}\\ B=2^\frac{7}{12}\)
C:
\(C=(\frac{1}{8^\frac{1}{5}})^2\\ C=(\frac{1}{(2^3)^\frac{1}{5}})^2\\ C=(\frac{1}{2^\frac{3}{5}})^2\\ C=(2^{-\frac{3}{5}})^2\\ C=(2^{-{\frac{6}{5}}})\\ \)
D:
\(D=\sqrt{\frac{4^{-1}}{2^{-1}\cdot8^{-1}}}\\ D=\sqrt{\frac{(2^2)^{-1}}{2^{-1}\cdot(2^3)^{-1}}}\\ D=\sqrt{\frac{2^{-2}}{2^{-4}}}\\ D=2\)
E:
\(E=\sqrt[3]{2^\frac{1}{2}\cdot4^-{\frac{1}{4}}}\\ E=\sqrt[3]{2^\frac{1}{2}\cdot(2^2)^-{\frac{1}{4}}}\\ E=\sqrt[3]{2^\frac{1}{2}\cdot2^-{\frac{1}{2}}}\\ E=\sqrt[3]{1}\\ E=1\)
We then order them: C, E, A, B, D.