(√2+i√3)×i√6−√2×(2i√2−3)+i×(6√6−6√3)=x−y+z
I am going to divide it into 3 parts.
x = (sqrt2 + i sqrt3) * i sqrt6
y = sqrt2 *(2i sqrt2 - 3)
z = i * (6/sqrt6 - 6/sqrt3)
x = (√2+i√3)×i√6=i√12+i2√18=2i√3−3√2
y = √2×(2i√2−3)=4i−3√2
z = i×(6√6−6√3)=i×(6−6√2√6)=i×(√6−√12)=i√6−2i√3
x - y + z
=(2i√3−2√2)−(4i−3√2)+(i√6−2i√3)=2i√3−2√2−4i+3√2+i√6−2i√3=√2+i(√6−4)
Therefore the original equation is sqrt2 + i(sqrt6 - 4)