If y = log x,
Then x = 10y .
\(3^{2x}-9(3^{-2x})=8\\ 3^{4x} - 9 = 8(3^{2x})\\ 3^{4x} - 8(3^{2x}) - 9=0\\ \text{Let u = }3^{2x}\\ u^2 - 8u - 9 = 0\\ (u+1)(u-9) = 0\\ u = -1 \text{ OR }u=9\\ 3^{2x} = -1\text{(rejected) OR }3^{2x} = 9\\ 3^{2x} = 9\\ x = 1\)
input = 3^(1-1)
OR you want 3^(2-1)
cos(78) = 0.207911690818
Btw, cosine, not cosign.
2919.219/134 = 21.7852164179104478.
:)
\(\left(\dfrac{-1}{2}\right)^2\\ =\dfrac{(-1)^2}{2^2}\\ =\dfrac{1}{4}\)
\(7\times2^{3x-5} = 53\\ 2^{3x-5}=\dfrac{53}{7}\\ \log_2 (2^{3x-5})=\log_2\dfrac{53}{7}\\ 3x - 5 = \log_2\dfrac{53}{7}\\ x = \dfrac{\log_2\dfrac{53}{7}+5}{3}\)
Which is 7.920565532505595
\(\boxed{\color{aqua}\log{\sqrt x}=\dfrac{\log x}{2}}\)
Btw the extension is just repeating the first 2 columns of the matrix.