Processing math: 100%
 

MaxWong

avatar
Nom d'utilisateurMaxWong
But9676
Membership
Stats
Questions 169
Réponses 3812

0
1555
3
avatar+9676 
MaxWong  13 janv. 2019
 #3
avatar+9676 
+1

(4x+13y)2This?

(4x+13y)2This?

4x+13y2Or this?

4x+1(3y)2Or this?

4x+(13y)2This?

4x+13y2Or even this?

Welp. Confused. Parentheses are important.

Nvm. I will do all of them

When x = 2, y = 3,

(4x+13y)2=(4×2+13×3)2=(8+1)2=92=81

-------------------------------------------------------------------------

(4x+13y)2=(4×2+13×3)2=(8+19)2=(739)2=73292=532981

------------------------------------------------------------------------

4x+13y2=4×2+13×32=8+127=21727

-----------------------------------------------------------------------

4x+1(3y)2=4×2+1(3×3)2=8+181=64981

----------------------------------------------------------------------

4x+(13y)2=4×2+(13×3)2=8+181=64981

---------------------------------------------------------------------

4x+13y2=4×2+13×32=8+3=11

.
25 mai 2017
 #1
avatar+9676 
0

In the given equation, the total number of "a" that exists is n.

Therefore the equation can be simplified to: an+(1+2+...+(n1))

1 + 2 + 3 + ... + n = n(n+1)2

Therefore the whole thing after the plus sign simplifies to: (n1)(1+(n1))2=n(n1)2

Original equation becomes an+n(n1)2=100

And then further simplify: 12n2+an12n100=0<--- I am trying to make it a quadratic here.

Take out the common factor n: 12n2+n(a12)100=0

To make it easier to solve, multiply each term by 2.

n2+n(2a1)200=0

It now becomes a quadratic equation with a is a constant and solving for n. Then we can find n in terms of a.

n=(2a1)±(2a1)2(4)(1)(200)2=12a±4a24a+8012

Because n is an integer, 4a24a+801 must be an integer too, to make n an integer.

That implies that 4a24a+801 is a square number.

Also, (4a24a+801)(mod4)1.

We now think of a square number which mod 4 = 1.

The nearest square number to 801 which mod 4 = 1 is 841, therefore we assume that the quadratic there is = 841 first.

4a24a+801=841a2a=10a(a1)=10

No positive integer "a" satisfies the equation.

The second nearest square number to 801 which mod 4 = 1 is 729,

4a24a+801=729a2a=72a(a1)=72

Still no positive integer "a" satisfies the equation.

We should think of a bigger number.

31^2 = 961 and mod 4 = 1.

4a24a+801=961a2a=40a(a1)=40

Still no positive integer "a" satisfies the equation :(

Try 1089

4a24a+801=1089a2a=72a(a1)=72a=9

Yay! :D

We back-substitute a = 9 into the quadratic formula to find the corresponding n.

n=12(9)±332n=8 or n=25(rejected)n=8

We get: a = 9, n = 8 (Finally after a lot of work XD)

25 mai 2017