\(\text{Let }A(-2,-2),B(4,-2),C(5,1),D(2,3)\).
Connect BD.
It is obvious that \(\text{Area of }\triangle ABD = \dfrac{6\cdot 5}{2} = 15 \text{ unit}^2\).
Now add point E(5, 3), F(2, -2), G(5, -2) on the same coordinate system.
Consider rectangle DEFG.
\(\text{Area of }\triangle BCD = \text{Area of rectangle } DEFG - \text{Area of }\triangle DEC - \text{Area of }\triangle CBG - \text{Area of }\triangle DFB\)
\(\text{Area of }\triangle BCD = 3\cdot 5 - \dfrac{2\cdot 5 + 3\cdot 2+1\cdot 3}{2} = 15 - \dfrac{19}{2}=\dfrac{11}{2} \text{ unit}^2\).
Therefore the total area of the figure is 15 + 11/2 = 20.5 unit2.