5)
\(\begin{cases} x+y=3\\ x^2+y^2=6\\ x^4=y^4+18\sqrt3 \end{cases}\\ (x + y)^2 = 9\\ x^2 + y^2 + 2xy = 9\\ 2xy = 3\\ x = \dfrac{3}{2y}\\ \dfrac{3}{2y} + y = 3\\ 2y^2 - 6y + 3 = 0\\ y = \dfrac{6\pm2\sqrt{3}}{4} = \dfrac{3\pm\sqrt{3}}{2}\\ \text{When } y = \dfrac{3+\sqrt3}{2}\text{,}\\ x = \dfrac{3-\sqrt3}{2}\\ \text{When } y = \dfrac{3-\sqrt3}{2}\text{,}\\ x = \dfrac{3+\sqrt3}{2}\\ \therefore (x,y) = \left(\dfrac{3+\sqrt3}{2},\dfrac{3-\sqrt3}{2}\right) \text{ OR }\left(\dfrac{3-\sqrt3}{2},\dfrac{3+\sqrt3}{2}\right)\)
.