Processing math: 100%
 

MaxWong

avatar
Nom d'utilisateurMaxWong
But9676
Membership
Stats
Questions 169
Réponses 3812

0
1555
3
avatar+9676 
MaxWong  13 janv. 2019
 #2
avatar+9676 
+1

Note that 150!=1×2×3×4×.

To find the largest n for which 12^n divides 150!, we find the largest m and k for which 2^m divides 150! and 3^k divides 150!.

 

The formula for finding the largest power n of a prime p for which p^n divides k! is: maxn=r=1kpr.

 

Then, maxm=r=11502r=1502+15022+15023+15024+15025+15026+15027, since 1502r=0 for any integer r >= 8.

Hence, maxm=146. i.e., 2146|150!, but 2147150!.

Similarly, we have maxk=72. i.e., 372|150!, but 373150!.

 

Now, we have 146 "two"s and 72 "three"s for us to pick from the prime factorization of 150!. To make 12, we take 2 "two"s and 1 "three". In total, we can make min(1462,72)=72 "twelve"s from what we have.

 

Therefore, the largest power of 12 such that 12^n divides 150! is n=72.

18 avr. 2022