(−1+i)7?
z=x+iy z=−1+i⇒x=−1,y=+1
r=√x2+y2=√(−1)2+12=√2
ϕ=sign(y)∗cos−1(xr)=+cos−1(−1√2)=cos−1(−√22)=34π
z=r∗eiϕ
\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\ z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\ z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\ z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\ z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi} = \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi\textcolor[rgb]{1,0,0}{-4\pi}}\right)\\
z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\
eiϕ=cosϕ+isinϕ
z7=(√2)7[cos(π+π4)+i∗sin(π+π4)]z7=(√2)7[cosπ⏟−1cosπ4−sinπ⏟0sinπ4+i(sinπ⏟0cosπ4+cosπ⏟−1sinπ4)]z7=(√2)7(−cosπ4−isinπ4)
\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\ z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\ z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\ z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)
z7=242(−1−i)z7=23(−1−i)z7=8(−1−i)z7=−8−8i
(−1+i)7=−8−8i
.Interesting!
7C0(−1)0(i)7+7C1(−1)1(i)6+7C2(−1)2(i)5+7C3(−1)3(i)4+7C4(−1)4(i)3+7C5(−1)5(i)2+7C6(−1)6(i)1+7C7(−1)7(i)0
=(i)7+7(−1)1(i2)3+7C2∗1∗(i4)i+7C3∗−1∗(i2)2+7C4∗1∗(i2)i+7C5∗−1∗(i2)+7∗1(i)1+−1
=(−1)i+7∗−1∗(−1)3+7C2∗1∗(−1)i+7C3∗−1∗(−1)2+7C4∗1∗(−1)i+7C5∗−1∗(−1)+7∗1∗(i)1+−1
=−i+7+7C2(i)+7C3(−1)+7C4(−i)+7C5(−1)+7i−1
=−i+7+21i−35−i35+21+7i−1=i(−1+21−34+7−1)+(7−35+21−1)=i(−8)−8=−8−8i
NOTE: I would actually be surprised if this is not riddled with careless errors. (I have fixed one little error)
BUT that is the technique that i would use.
Thanks admin.
(−1+i)7?
z=x+iy z=−1+i⇒x=−1,y=+1
r=√x2+y2=√(−1)2+12=√2
ϕ=sign(y)∗cos−1(xr)=+cos−1(−1√2)=cos−1(−√22)=34π
z=r∗eiϕ
\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\ z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\ z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\ z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\ z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi} = \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi\textcolor[rgb]{1,0,0}{-4\pi}}\right)\\
z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\
eiϕ=cosϕ+isinϕ
z7=(√2)7[cos(π+π4)+i∗sin(π+π4)]z7=(√2)7[cosπ⏟−1cosπ4−sinπ⏟0sinπ4+i(sinπ⏟0cosπ4+cosπ⏟−1sinπ4)]z7=(√2)7(−cosπ4−isinπ4)
\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\ z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\ z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\ z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)
z7=242(−1−i)z7=23(−1−i)z7=8(−1−i)z7=−8−8i
(−1+i)7=−8−8i