Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3
3768
5
avatar

(-1 + i)^7 working?

 May 28, 2014

Best Answer 

 #3
avatar+26396 
+10

(1+i)7?

z=x+iy  z=1+ix=1,y=+1

r=x2+y2=(1)2+12=2

ϕ=sign(y)cos1(xr)=+cos1(12)=cos1(22)=34π

z=reiϕ

\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\  z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\  z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\  z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\  z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi}   = \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi\textcolor[rgb]{1,0,0}{-4\pi}}\right)\\

z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\

eiϕ=cosϕ+isinϕ

z7=(2)7[cos(π+π4)+isin(π+π4)]z7=(2)7[cosπ1cosπ4sinπ0sinπ4+i(sinπ0cosπ4+cosπ1sinπ4)]z7=(2)7(cosπ4isinπ4)

\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\  z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\  z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\  z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)

z7=242(1i)z7=23(1i)z7=8(1i)z7=88i

(1+i)7=88i

.
 May 28, 2014
 #1
avatar+118703 
+8

Interesting!

7C0(1)0(i)7+7C1(1)1(i)6+7C2(1)2(i)5+7C3(1)3(i)4+7C4(1)4(i)3+7C5(1)5(i)2+7C6(1)6(i)1+7C7(1)7(i)0

 

=(i)7+7(1)1(i2)3+7C21(i4)i+7C31(i2)2+7C41(i2)i+7C51(i2)+71(i)1+1

 

=(1)i+71(1)3+7C21(1)i+7C31(1)2+7C41(1)i+7C51(1)+71(i)1+1

 

=i+7+7C2(i)+7C3(1)+7C4(i)+7C5(1)+7i1

 

=i+7+21i35i35+21+7i1=i(1+2134+71)+(735+211)=i(8)8=88i

 

NOTE: I would actually be surprised if this is not riddled with careless errors. (I have fixed one little error)

BUT that is the technique that i would use.

Thanks admin.  

 May 28, 2014
 #2
avatar+3146 
+5

(1+i)7=88i

expand((1+i)7)=i77×i6+21×i535×i4+35×i321×i2+7×i1

.
 May 28, 2014
 #3
avatar+26396 
+10
Best Answer

(1+i)7?

z=x+iy  z=1+ix=1,y=+1

r=x2+y2=(1)2+12=2

ϕ=sign(y)cos1(xr)=+cos1(12)=cos1(22)=34π

z=reiϕ

\\z=\sqrt2*e^{i*\frac{3}{4}\pi} \\  z^7=\left(\sqrt2*e^{i*\frac{3}{4}\pi}\right)^7 \\  z^7=\left(\sqrt2\right)^7*\left(e^{i*\frac{3}{4}\pi}\right)^7 \\  z^7=\left(\sqrt2\right)^7*e^{i*\frac{7*3}{4}\pi} \\  z^7=\left(\sqrt2\right)^7*e^{i*\frac{21}{4}\pi}   = \left(\sqrt2\right)^7*e^{i\left(4\pi+\pi+\frac{1}{4}\pi\textcolor[rgb]{1,0,0}{-4\pi}}\right)\\

z^7=\left(\sqrt2\right)^7*e^{i\left(\pi+\frac{1}{4}\pi}\right)\\

eiϕ=cosϕ+isinϕ

z7=(2)7[cos(π+π4)+isin(π+π4)]z7=(2)7[cosπ1cosπ4sinπ0sinπ4+i(sinπ0cosπ4+cosπ1sinπ4)]z7=(2)7(cosπ4isinπ4)

\sin{\frac{\pi}{4}}=\cos{\frac{\pi}{4}}=\frac{\sqrt{2} }{2}\quad\\  z^7=\left(\sqrt2\right)^7 \left( -\frac{\sqrt{2}}{2}-i{\frac{\sqrt{2}}{2}\right)\\  z^7=\left(\sqrt2\right)^7\frac{\sqrt{2}}{2}\left( -1-i\right)\\  z^7=\frac{\left(\sqrt{2}\right)^8}{2}\left(-1-i\right)

z7=242(1i)z7=23(1i)z7=8(1i)z7=88i

(1+i)7=88i

heureka May 28, 2014
 #4
avatar+33654 
+5

(-1+i)^7=(-1+i)^2(-1+i)^2(-1+i)^2(-1+i)(-1+i)^2 = 1-2i+i^2=1-2i-1=-2iTherefore(-1+i)^7=(-2i)^3(-1+i)=(-2)^3i^3(-1+i)=8i(-1+i)=-8-8i$$

.
 May 28, 2014
 #5
avatar+118703 
0

WOW Alan,

I sure know how to make a mountain out of a mole hill!

I'd double you score it I could!

 May 29, 2014

1 Online Users