Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
879
8
avatar

1. Let a0=2,b0=1, and for n0,letan+1=an+bn+a2n+b2n,bn+1=an+bna2n+b2n.Find1a2012+1b2012.

 

2. Suppose that (loga/b)2+(logab)2=20 and (logalogb)logab=8. Find $|loga|$.

 

3. Find all the solutions to 3352+x+352x=2.Enter all the solutions, separated by commas.

 

4. Is f(x)=log(x+1+x2)an even function, odd function, or neither? Enter "odd", "even", or "neither".

 Jun 22, 2019
 #1
avatar+130466 
+1

2.     [  log (a / b) ]^2  +  [ (log ab) ] ^2  =  20         and    (log a - log b) log(ab)  = 8

 

Note that

log (a / b)  = log a - log b

log (ab)  =   log a + log b

 

So we have

 

(log a - log b)^2  + (log a + log b)^2  =  20         and   (log a - log b) ( log a + log b )  = 8

 

Let log a  = u       Let log b = v

 

So

 

(u - v)^2   + ( u + v)^2  = 20                                 and        (u - v) (u + v)  = 8

u^2  - 2uv + v^2   + u^2 + 2uv + v^2  = 20                         u^2  - v^2  = 8     (2)

2u^2 + 2v^2  = 20

u^2 + v^2  = 10    (1)

 

 

Add (1)  and (2)    and we have that

 

2u^2  = 18

u^2  = 9

u = ±3  

 

So 

 

u =  log  a  = ± 3

 

So

 

l log a  l     =   l ± 3 l  =      3

 

 

cool cool cool

 Jun 22, 2019
 #5
avatar
0

Thank you so much, I appreciate your help!

Guest Jun 23, 2019
 #2
avatar
0

3 -  

Solve for x:
((5 sqrt(2) - x)^(1/3) + (x + 5 sqrt(2))^(1/3))^(1/3) = sqrt(2)

Raise both sides to the power of three:
(5 sqrt(2) - x)^(1/3) + (x + 5 sqrt(2))^(1/3) = 2 sqrt(2)

Subtract (x + 5 sqrt(2))^(1/3) from both sides:
(5 sqrt(2) - x)^(1/3) = 2 sqrt(2) - (x + 5 sqrt(2))^(1/3)

 

Raise both sides to the power of three:
5 sqrt(2) - x = (2 sqrt(2) - (x + 5 sqrt(2))^(1/3))^3

Subtract (2 sqrt(2) - (x + 5 sqrt(2))^(1/3))^3 from both sides:
5 sqrt(2) - x - (2 sqrt(2) - (x + 5 sqrt(2))^(1/3))^3 = 0

5 sqrt(2) - x - (2 sqrt(2) - (x + 5 sqrt(2))^(1/3))^3 = -6 sqrt(2) + 24 (x + 5 sqrt(2))^(1/3) - 6 sqrt(2) (x + 5 sqrt(2))^(2/3):
-6 sqrt(2) + 24 (x + 5 sqrt(2))^(1/3) - 6 sqrt(2) (x + 5 sqrt(2))^(2/3) = 0


Simplify and substitute y = (x + 5 sqrt(2))^(1/3).
-6 sqrt(2) + 24 (x + 5 sqrt(2))^(1/3) - 6 sqrt(2) (x + 5 sqrt(2))^(2/3) = -6 sqrt(2) + 24 (x + 5 sqrt(2))^(1/3) - 6 sqrt(2) ((x + 5 sqrt(2))^(1/3))^2
 = -6 sqrt(2) y^2 + 24 y - 6 sqrt(2):
-6 sqrt(2) y^2 + 24 y - 6 sqrt(2) = 0

Divide both sides by -6 sqrt(2):
y^2 - 2 sqrt(2) y + 1 = 0

 

Subtract 1 from both sides:
y^2 - 2 sqrt(2) y = -1

Add 2 to both sides:
y^2 - 2 sqrt(2) y + 2 = 1


Write the left hand side as a square:
(y - sqrt(2))^2 = 1

Take the square root of both sides:
y - sqrt(2) = 1 or y - sqrt(2) = -1

Add sqrt(2) to both sides:
y = 1 + sqrt(2) or y - sqrt(2) = -1

 

Substitute back for y = (x + 5 sqrt(2))^(1/3):
(x + 5 sqrt(2))^(1/3) = 1 + sqrt(2) or y - sqrt(2) = -1

Raise both sides to the power of three:
x + 5 sqrt(2) = (1 + sqrt(2))^3 or y - sqrt(2) = -1


Subtract 5 sqrt(2) from both sides:
x = (sqrt(2) + 1)^3 - 5 sqrt(2) or y - sqrt(2) = -1

(sqrt(2) + 1)^3 - 5 sqrt(2) = 7:
x = 7 or y - sqrt(2) = -1

Add sqrt(2) to both sides:
x = 7 or y = sqrt(2) - 1

 

Substitute back for y = (x + 5 sqrt(2))^(1/3):
x = 7 or (x + 5 sqrt(2))^(1/3) = sqrt(2) - 1

Raise both sides to the power of three:
x = 7 or x + 5 sqrt(2) = (sqrt(2) - 1)^3

 

Subtract 5 sqrt(2) from both sides:
x = 7 or x = (sqrt(2) - 1)^3 - 5 sqrt(2)
sqrt(2) - 1)^3 - 5 sqrt(2) = -7:

 

x = 7              or               x = -7

 Jun 22, 2019
 #7
avatar
0

Thank you for your work!

Guest Jun 23, 2019
 #3
avatar+9675 
+1

4)

f(x)=log(x+1+x2)f(x)=log(x+1+x2)=log((x+1+x2)(x+1+x2)x+1+x2)=log((1+x2)2x2x+1+x2)=log(1x+1+x2)=log((x+1+x2)1)=log(x+1+x2)=f(x)It is an odd function.

 Jun 22, 2019
 #8
avatar
0

Thank you very much as well!

Guest Jun 23, 2019
 #4
avatar+26396 
+3

1.
Let a0=2,b0=1, and forn0,letan+1=an+bn+a2n+b2n,bn+1=an+bna2n+b2n.
Find1a2012+1b2012.

 

1an+1+1bn+1=1an+bn+a2n+b2n+1an+bna2n+b2n=an+bna2n+b2n+an+bna2n+b2n(an+bn+a2n+b2n)(an+bna2n+b2n)=2(an+bn)(an+bn)2(a2n+b2n)2=2(an+bn)a2n+2anbn+b2n(a2n+b2n)=2(an+bn)2anbn=an+bnanbn=1an+1bn1an+1+1bn+1=1an+1bn==1a1+1b11a1+1b1=11+5+115=121a2012+1b2012=1a1+1b1=12

 

laugh

 Jun 22, 2019
 #6
avatar
+1

Thank you for you thorough steps, I really understand now!

Guest Jun 23, 2019

3 Online Users

avatar
avatar