Why does 2^2 + 4^2 + 6^2... 20^2 equal 1540
Thanks- that helped a lot:)
2^2 + 4^2 + 6^2... 20^2 =
(1 * 2)^2 + (2 * 2)^2 + (3 * 2)^2 +..... + (10 * 2)^2 =
2^2 [ 1^2 + 2^2 + 3^2 + .....+ 10^2] =
4 [ n * (n + 1) *(2n + 1) ] / 6 =
(2/3) [ 10 * 11 * 21] =
1540
I don't gettit
Note that: 12+22+32+42+...+n2=n(n+1)(2n+1)6
22+42+62+...+202=(1×2)2+(2×2)2+(3×2)2+...+(10×2)2=12×22+22×22+32×22+...+102×22=22(12+22+32+...+102)=22((10)(11)(21)6)=(13)(2)(10)(11)(21)=(7)(2)(10)(11)=(14)(10)(11)=(154)(10)=1540