(1)3y+4x=11(2)3y+2x=13−−−−−−−−(1)−(2)0y+2x=−22x=−2|:2x=−1
\boxed{\begin{array}{lrcrcrr}
(1) &3y & + & 4x &=& 11 &\\
(2)& 3y& + & 2x &=& 13 &
\\&--&-&--&-&--&
\\(1) - (2)& 0 y&+&2x&=&-2 &
\\&&&2x&=&-2 & \quad | \quad :2
\\ &&&\textcolor[rgb]{1,0,0}{x}&\textcolor[rgb]{1,0,0}{=}&\textcolor[rgb]{1,0,0}{-1} &
\end{array}}
(1)3y+4x=11x=−13y+4(−1)=113y−4=11|+43y=15|:3y=5
\boxed{\begin{array}{lrcrcrr} (1) &3y & + & 4x &=& 11 & \qquad x=-1
\\&3y&+&4(-1)&=&11&
\\&3y&-&4&=&11& \quad | \quad +4
\\&3y&&&=&15&\quad | \quad :3
\\&\textcolor[rgb]{1,0,0}{y}&&&\textcolor[rgb]{1,0,0}{=}&\textcolor[rgb]{1,0,0}{5}&\end{array}}
Notice that if I rearrange the first equation, we have ...... 3y = 11 - 4x
And substituting into the second equation gives us ........(11 - 4x) + 2x = 13
Simplifying, we have .........11 - 2x = 13
Add 2x to both sides .......... 11 = 13 + 2x
Subtract 13 from both sides ........11 - 13 = 2x
Simplify ........... -2 = 2x
Divide by 2 on both sides ............ -1 = x ...... so there's "x"
To find "y," just substitute -1 into either of the two original equations for "x" .....I'll use the first one
3y + 4(-1) = 11
3y - 4 = 11 add 4 to both sides
3y = 15 divide by 3 on both sides
y = 5
So we have (x , y) = (-1 , 5)
(1)3y+4x=11(2)3y+2x=13−−−−−−−−(1)−(2)0y+2x=−22x=−2|:2x=−1
\boxed{\begin{array}{lrcrcrr}
(1) &3y & + & 4x &=& 11 &\\
(2)& 3y& + & 2x &=& 13 &
\\&--&-&--&-&--&
\\(1) - (2)& 0 y&+&2x&=&-2 &
\\&&&2x&=&-2 & \quad | \quad :2
\\ &&&\textcolor[rgb]{1,0,0}{x}&\textcolor[rgb]{1,0,0}{=}&\textcolor[rgb]{1,0,0}{-1} &
\end{array}}
(1)3y+4x=11x=−13y+4(−1)=113y−4=11|+43y=15|:3y=5
\boxed{\begin{array}{lrcrcrr} (1) &3y & + & 4x &=& 11 & \qquad x=-1
\\&3y&+&4(-1)&=&11&
\\&3y&-&4&=&11& \quad | \quad +4
\\&3y&&&=&15&\quad | \quad :3
\\&\textcolor[rgb]{1,0,0}{y}&&&\textcolor[rgb]{1,0,0}{=}&\textcolor[rgb]{1,0,0}{5}&\end{array}}