Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+4
831
3
avatar+306 

A function f has a horizontal asymptote of y=-4, a vertical asymptote of x=3 and an x-intercept at (1, 0).

 

a) Let f be of the form f(x)=rx+s2x+t. Find an expression for f(x).

 

b) Let f be of the form f(x)=ax+bx+c. Find an expression for f(x).

 Jun 24, 2020
 #1
avatar+781 
+2

(a) We use the vertical asymptote, x=3, to help us solve for c. We let x be 3. We need to find c so that the denominator, x+c, is 0, and the fraction is undefined.

x+c=03+c=0c=3. 

 

We let f(x) equal to y and plug in the value of c. We then have

y=ax+bx3y(x3)=ax+bx3(x3)y(x3)=ax+bxy3y=ax+bxyax=b+3yx(ya)=b+3yx=3y+ba+y. 

Now we use the horizontal asymptote y=-4 to help us solve for a. Using similar logic as we solved for c to solve for a, we get

 a+y=0a4=0a=4.

 

We then plug the values of a and c into f(x)=ax+bx3 to get f(x)=4x+bx3. We plug in the point (1, 0) into the equation to solve for b. f(x)=4x+bx30=4(1)+b130=4+b20=4+bb=4.

 

Therefore f(x)=ax+bx+c is f(x)=4x+4x3. 

 

Use similar logic to solve for part (b).

 Jun 24, 2020
 #2
avatar+306 
+3

Thank you so much!!

mathmathj28  Jun 25, 2020
 #3
avatar
0

I'm a bit confused. Why do we want the fraction to be undefined? Could you please explain this to me?

Thanks

Guest Jun 28, 2020

1 Online Users