Processing math: 100%
 
+0  
 
0
30
1
avatar+448 

Let a_1, a_2, a_3, \dots, a_8, a_9, a_{10} be an arithmetic sequence. If $a_1 + a_3 = 5$ and $a_2 + a_4 = 6$, then find $a_1$.

 Aug 25, 2024
 #1
avatar+135 
0

If d is the common difference between consecutive terms of the arithmetic sequence, then we can rewrite the sequaence as a1,a1+d,a1+2d,,a1+7d,a1+8d,a1+9d.

 

We can now werite both equations as

 1:a1+(a1+2d)=5 and 2:(a1+d)+(a1+3d)=6 and solve for d and a.

 

Let's use elimination:

 

2:2a1+4d=6

1:2a1+2d=5

 

2d=1

d=12

 

1:2a1+2(12)=5

2a1+1=5

2a1=4

a1=2

 

This means that the sequence is 2, 2.5, 3, 3.5, ... and that a_1 = 2

 Aug 26, 2024

0 Online Users