Processing math: 100%
 
+0  
 
+1
703
5
avatar+448 

I need help w this qustion

 Apr 13, 2020
 #1
avatar+9675 
+2

a)

f(x) is {positivenegative} when f(x) is {strictly increasingstrictly decreasing}.

f(x) is strictly increasing on the interval (,1)(3,) and strictly decreasing on the interval (1,3).

 

What about when x = 1 or x = 3?

 

Let ε be an arbitrary constant, infinitesmally small.

f(1ε)>0 and f(1+ε)<0

At x = 1, local maximum of f(x) occurs.

 

f(3ε)<0 and f(3+ε)>0

At x = 3, local minimum of f(x) occurs.

 

f(x) is {increasingdecreasingconstant} when f(x) {is convexis concavehas a point of inflexion}.

f(x) is concave on the interval (,2) and is convex on the interval (2,).

Point of inflexion of f(x) occurs at x=2.

 

b)

f(x) is {increasingdecreasingconstant} when f(x) is {positivenegative0}.

f(x) is negative on the interval (,2) and is positive on the interval (2,).

f(2)=0

 Apr 14, 2020
 #2
avatar
+1

what do you mean by f' is constant when f has a point of inflexion?

Guest Apr 14, 2020
edited by Guest  Apr 14, 2020
 #3
avatar+118703 
+1

If the gradient is not increasing and not decreasing then it must be a constant. 

At a point of inflection

 

d2ydx2=0 and dydx=d2ydx2dx=0dx=k

 

I am not sure that I have presented this properly.

 

Feel free to comment Max.

Melody  Apr 14, 2020
edited by Melody  Apr 14, 2020
 #4
avatar
+1

a constant where? on the entire line?

Guest Apr 14, 2020
 #5
avatar+118703 
+1

No just at that one point. At the point of inflextion the gradient is neither increasing nor decreasing. 

If ithe rate of change is not + or - then it must be 0. Which means that  the gradient must be a constant at that point. 

 

It is not something I would usually add.  (I can see the confusion)

I would normally have just left the statement out altogether.

It is true though.

Melody  Apr 14, 2020

0 Online Users