z^2 = 2i + 2.
let Z = a+bi
Z^2= a^2-b^2+2abi
a2−b2=2(1)2ab=2(2)ab=1b=1/aa2−1a2=2a4−2a2−1=0letm=a2m2−2m−1=0...m=1+√2orm=1−√2but m is positive som=1+√2a=±√1+√2b=±1√1+√2
a=±√1+√2b=±1√1+√2b=±1√1+√2√1+√2√1+√2b=±√1+√21+√2b=±√1+√21+√2×1−√21−√2b=±√1+√21−2×√1−√2√1−√21b=±√1−21−2×√1−√21b=±i−1×i√√2−11b=±√√2−1
You seriously need to check that
PLUS I expect it should ahave been done by letting Z=Aeiθ
LaTex
a^2-b^2=2 \qquad (1)\\2ab=2\qquad (2)\\
ab=1\\
b=1/a\\
a^2-\frac{1}{a^2}=2\\
a^4-2a^2-1=0\\
let\;\;m=a^2\\
m^2-2m-1=0\\
...\\
m=1+\sqrt2\qquad or \qquad m=1-\sqrt2\\
\text{but m is positive so}\\
m=1+\sqrt2\\
a=\pm\sqrt{1+\sqrt2}\\
b=\pm\frac{1}{\sqrt{1+\sqrt2}}
a=\pm\sqrt{1+\sqrt2}\\
b=\pm\frac{1}{\sqrt{1+\sqrt2}}\\
b=\pm\frac{1}{\sqrt{1+\sqrt2}}\frac{\sqrt{1+\sqrt2}}{\sqrt{1+\sqrt2}}\\
b=\pm\frac{\sqrt{1+\sqrt2}}{1+\sqrt2}\\
b=\pm\frac{\sqrt{1+\sqrt2}}{1+\sqrt2}\times\frac{1-\sqrt2}{1-\sqrt2}\\
b=\pm\frac{\sqrt{1+\sqrt2}}{1-2}\times\frac{\sqrt{1-\sqrt2}\sqrt{1-\sqrt2}}{1}\\
b=\pm\frac{\sqrt{1-2}}{1-2}\times\frac{\sqrt{1-\sqrt2}}{1}\\
b=\pm\frac{i}{-1}\times \frac{i\sqrt{\sqrt2-1}}{1}\\
b=\pm \sqrt{\sqrt2-1}\\