Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
672
4
avatar

Compute sin10sin30sin50sin70

 Jul 11, 2020

Best Answer 

 #2
avatar+9675 
+2

sin10sin30sin50sin70=12sin10sin50sin70=12sin10sin(6010)sin(60+10)

 

Now, use the identity: 4sinxsin(60x)sin(60+x)=sin3x and substitute x = 10o.

 

sin10sin30sin50sin70=12sin10sin(6010)sin(60+10)=18(4sin10sin(6010)sin(60+10))=18(sin(310))=18sin30=1812=116

 Jul 11, 2020
 #1
avatar+15066 
+1

sin10sin30sin50sin70=0.0625

 

Hello Guest!  

 

sin x=12i(eixeix)

 

sinπ18sin3π18sin5π18sin7π18

 =12i(eiπ18eiπ18)×12i(ei3π18ei3π18)

              ×12i(ei5π18ei5π18)×12i(ei7π18ei7π18)

=0.0625

laugh  !

.
 Jul 11, 2020
edited by asinus  Jul 11, 2020
 #2
avatar+9675 
+2
Best Answer

sin10sin30sin50sin70=12sin10sin50sin70=12sin10sin(6010)sin(60+10)

 

Now, use the identity: 4sinxsin(60x)sin(60+x)=sin3x and substitute x = 10o.

 

sin10sin30sin50sin70=12sin10sin(6010)sin(60+10)=18(4sin10sin(6010)sin(60+10))=18(sin(310))=18sin30=1812=116

MaxWong Jul 11, 2020
 #3
avatar+9675 
+2

Appendix: Why is 4sinxsin(60x)sin(60+x)=sin3x?

 

Proof:

 

Using compound angle formula,

 

4sinxsin(60x)sin(60+x)=4sinx(sin60cosxcos60sinx)(sin60cosx+cos60sinx)

 

Simplifying,

 

4sinxsin(60x)sin(60+x)=4sinx(32cosx12sinx)(32cosx+12sinx)

4sinxsin(60x)sin(60+x)=sinx(3cosxsinx)(3cosx+sinx)

 

Now, by the identity a2b2=(ab)(a+b),

4sinxsin(60x)sin(60+x)=sinx(3cos2xsin2x)

 

Starting from the right hand side, expanding using triple angle formula,

(if you haven't learnt that yet, you can try expanding it with compound angle formula and double angle formula.)

sin3x=3sinx4sin3x

 

Now, it suffices to show that sinx(3cos2xsin2x)=3sinx4sin3x

 

To do so, we use the identity cos2x=1sin2x.

 

sinx(3cos2xsin2x)=sinx(3(1sin2x)sin2x)=sinx(33sin2xsin2x)=sinx(34sin2x)=3sinx4sin3x

 

Therefore, the original identity 4sinxsin(60x)sin(60+x)=sin3x is true.

MaxWong  Jul 11, 2020
 #4
avatar+26396 
+1

Compute  
sin(10)sin(30)sin(50)sin(70)


Formula:
(1)cos(xy)=cos(x)cos(y)+sin(x)sin(y)(2)cos(x+y)=cos(x)cos(y)sin(x)sin(y)(1)(2):2sin(x)sin(y)=cos(xy)cos(x+y)

 

sin(10)sin(30)sin(50)sin(70)|sin(30)=12=12sin10()sin(70)sin(50)2sin(x)sin(y)=cos(xy)cos(x+y)2sin(10)sin(70)=cos(60)cos(80)|cos(60)=122sin(10)sin(70)=12cos(80)|cos(80)=cos(9010)=sin(10)2sin(10)sin(70)=12sin(10)sin(10)sin(70)=1412sin(10)=12(1412sin(10))sin(50)=18sin(50)14sin(10)sin(50)2sin(x)sin(y)=cos(xy)cos(x+y)2sin(10)sin(50)=cos(40)cos(60)|cos(60)=122sin(10)sin(50)=cos(40)12|cos(40)=cos(9050)=sin(50)2sin(10)sin(50)=sin(50)12sin(10)sin(50)=12sin(50)14=18sin(50)14(12sin(50)14)=18sin(50)18sin(50)+116=116

 

laugh

 Jul 12, 2020
edited by heureka  Jul 13, 2020

3 Online Users

avatar