Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
877
2
avatar+159 

Compute
9999n=11(n+n+1)(4n+4n+1).

 Jun 7, 2019

Best Answer 

 #2
avatar+9675 
+3

This sum is obviously telescoping :)

=9999n=11(n+n+1)(4n+4n+1)=9999n=14n+14n(n+n+1)(4n+4n+1)(4n+14n)=9999n=14n+14n(n+n+1)(n+1n)=9999n=14n+14nn+1n=9999n=1(4n+14n)=(4241)+(4342)+(4443)++(41000049999)=41000041=101=9

 Jun 7, 2019
 #1
avatar
+2

sum_(n=1)^9999 1/((sqrt(n) + sqrt(n + 1)) (n^(1/4) + (n + 1)^(1/4)))≈9.000000000000000000000000000000000000000

 Jun 7, 2019
 #2
avatar+9675 
+3
Best Answer

This sum is obviously telescoping :)

=9999n=11(n+n+1)(4n+4n+1)=9999n=14n+14n(n+n+1)(4n+4n+1)(4n+14n)=9999n=14n+14n(n+n+1)(n+1n)=9999n=14n+14nn+1n=9999n=1(4n+14n)=(4241)+(4342)+(4443)++(41000049999)=41000041=101=9

MaxWong Jun 7, 2019

0 Online Users