Processing math: 100%
 
+0  
 
+1
18
1
avatar+900 

Let $O$ be the origin. Points $P$ and $Q$ lie in the first quadrant. The slope of line segment $\overline{OP}$ is $4,$ and the slope of line segment $\overline{OQ}$ is $5.$ If $OP = OQ,$ then compute the slope of line segment $\overline{PQ}.$

 

Note: The point $(x,y)$ lies in the first quadrant if both $x$ and $y$ are positive.

 May 19, 2024
 #1
avatar+15070 
+1

Compute the slope of line segment ¯PQ.

 

Let ¯OQ=¯OP=5fc(x)=+52x2foq(x)=5xfop(x)=4x

25x2=5x25x2=25x2xq=2526=0.9806yq=25265=4.90325x2=4xxp=2517=1.2127yp=25174=4.8507

 

mPQ=yqypxqxp=4.90294.85070.98061.2127mPQ=0.2249The slope of line segment ¯PQ is 0.2249.

laugh !

.
 May 19, 2024
edited by asinus  May 19, 2024

1 Online Users