Processing math: 100%
 
+0  
 
0
35
1
avatar+1266 

In triangle $ABC$, point $X$ is on side $\overline{BC}$ such that $AX = 13,$ $BX = 13,$ $CX = 5,$ and the circumcircles of triangles $ABX$ and $ACX$ have the same radius. Find the area of triangle $ABC$.

 May 10, 2024
 #1
avatar+9675 
0

Let AB = b, and AC = c. Moreover, let [ABX]=A1 and [ACX]=A2, where [] denote "area of".

By Stewart's theorem, we have 

(13+5)(132+13(5))=5b2+13c25b2+13c2=4212

 

By basic geometry, we have A1A2=135

Recall that the circumradius of a triangle with sides a, b, c and area A is abc4A. Then, since the circumradius of triangles ABX and ACX are the same, we have 

132b4A1=5(13)c4A2A1A2=13b5c135=13b5cb=c.

 

Hence, 

18b2=18c2=4212b=c=326

 

We calculate the half perimeter of triangle ABC to be 18+b+c2=326+9. Then, by Heron's formula, the area required is:

 

(326+9)(3269)(92)=2717

 May 10, 2024
edited by MaxWong  May 10, 2024

2 Online Users

avatar