Processing math: 100%
 
+0  
 
0
738
6
avatar+9675 

Solve the differential equation:

2xy dx+(1+x2) dy=0

 Jan 1, 2017

Best Answer 

 #5
avatar
+10

It went wrong at the end Max.

 

It's better if the constant is on the x side, and then

 

ln11+x2+ln(K)=ln(y),

 

lnK1+x2=ln(y),

 

y=K1+x2.

 

Tiggsy

 Jan 2, 2017
 #1
avatar
+5

Hi Max

separate variables to get

(1+x^2)dy = -2xydx 

1/y  dy      = (-2x dx)/(1+x^2)

intergrate lhs wrt y    and rhs wrt to x

ln y  = -  ln (1+x^2)    = ln(1/{1+x^2} )

anti log both sides

y= 1/(1+x^2)

 

and a happy new year

 Jan 1, 2017
 #2
avatar+9675 
0

The answer is correct.

Btw Happy New Year :)

MaxWong  Jan 1, 2017
 #3
avatar
+5

Solution should contain a constant of integration.

 Jan 1, 2017
 #4
avatar+9675 
+5

OK. I thought it was correct...... Let me do it myself......

2xy dx+(1+x2) dy=02xy dx=(1+x2) dy2x1+x2 dx= dyy2x1+x2 dx= dyy Let u=1+x2, du=2x dx duu= dyyln|u|=ln|y|+Cln|1u|=ln|y|+Cln|11+x2|=ln|y|+C Set C=lnKln(11+x2)=ln|y+K||y+K|=11+x2y+K=±11+x2y=K±11+x2

MaxWong  Jan 2, 2017
 #5
avatar
+10
Best Answer

It went wrong at the end Max.

 

It's better if the constant is on the x side, and then

 

ln11+x2+ln(K)=ln(y),

 

lnK1+x2=ln(y),

 

y=K1+x2.

 

Tiggsy

Guest Jan 2, 2017
 #6
avatar+9675 
+5

Oh thank you.

I am not very careful

MaxWong  Jan 2, 2017

2 Online Users

avatar