what is the exact value of sin (pi/5) ?
Formula:
sin(5φ)=16sin5(φ)−20sin3(φ)+5sin(φ)
Ansatz:
(1):sin(360∘)=0=sin(5⋅72∘)=16sin5(72∘)−20sin3(72∘)+5sin(72∘)16sin5(72∘)−20sin3(72∘)+5sin(72∘)=0|:sin(72∘)16sin4(72∘)−20sin2(72∘)+5=0|x=sin2(72∘)16x2−20x+5=0(2):sin(180∘)=0=sin(5⋅36∘)=16sin5(36∘)−20sin3(36∘)+5sin(36∘)16sin5(36∘)−20sin3(36∘)+5sin(36∘)=0|:sin(36∘)16sin4(36∘)−20sin2(36∘)+5=0|x=sin2(36∘)16x2−20x+5=0
The quadratic polynomial 16x2−20x+5 has following roots: < sin2(72∘), sin2(36∘) >
The general quadratic equation is: ax2+bx+c=0.
The quadratic formula is: x=−b±√b2−4ac2a.
x=20±√202−4⋅16⋅52⋅16=20±√400−32032=20±√8032=20±√16⋅532=20±4√532=5±√58√x=√5±√58
Because sin(72∘)>sin(36∘)
we have:
sin(72∘)=√5+√58sin(36∘)=√5−√58
Again Lisa, you need to use brackets better
(sin pi)/5 = 0
--------------------------------------------------------------------
sin(pi/5)
Well wolfram alpha giives an exact value here.
http://www.wolframalpha.com/input/?i=sin(pi%2F5)
Not sure how to work that out.........
sin(Pi rad) /5 = sin(180 deg) /5 =0
sin (Pi/5 rad) = sin(180/5 deg) = sin(36 deg) = 0.587785252292
Be exact with using brackets, they are important!
√58−√58??
it equals
√(√5−12)(√54)
and the golden ratio = (sqrt5 - 1)/2, and golden ratio is often related to pentagons.
So maybe we can work that exact value out of pentagons? :)
what is the exact value of sin (pi/5) ?
Formula:
sin(5φ)=16sin5(φ)−20sin3(φ)+5sin(φ)
Ansatz:
(1):sin(360∘)=0=sin(5⋅72∘)=16sin5(72∘)−20sin3(72∘)+5sin(72∘)16sin5(72∘)−20sin3(72∘)+5sin(72∘)=0|:sin(72∘)16sin4(72∘)−20sin2(72∘)+5=0|x=sin2(72∘)16x2−20x+5=0(2):sin(180∘)=0=sin(5⋅36∘)=16sin5(36∘)−20sin3(36∘)+5sin(36∘)16sin5(36∘)−20sin3(36∘)+5sin(36∘)=0|:sin(36∘)16sin4(36∘)−20sin2(36∘)+5=0|x=sin2(36∘)16x2−20x+5=0
The quadratic polynomial 16x2−20x+5 has following roots: < sin2(72∘), sin2(36∘) >
The general quadratic equation is: ax2+bx+c=0.
The quadratic formula is: x=−b±√b2−4ac2a.
x=20±√202−4⋅16⋅52⋅16=20±√400−32032=20±√8032=20±√16⋅532=20±4√532=5±√58√x=√5±√58
Because sin(72∘)>sin(36∘)
we have:
sin(72∘)=√5+√58sin(36∘)=√5−√58
Thank you all very much for your help guys! But I must solve it using the half- angle formulas. Sorry I forgot to mention that, I was in a rush. Also with correct brackets it is sin (pi/5)
Thank you all very much for your help guys! But I must solve it using the half- angle formulas. Sorry I forgot to mention that, I was in a rush. Also with correct brackets it is sin (pi/5)
Also the problem says that given sin(π10)=(−1+√5)4, find sin(π5)
Formula:
sin(2φ)=2⋅sinφ⋅cosφcosφ=√1−sin2φsin(2φ)=2⋅sinφ⋅√1−sin2φ
We set:
sin2φ=sin(π5)sinφ=sin(π10)=√5−14
We have:
sin(2φ)=2⋅sinφ⋅√1−sin2φsin(π5)=2⋅√5−14⋅√1−(√5−14)2sin(π5)=√5−12⋅√1−(√5−14)2sin(π5)=√5−12⋅√16−(√5−1)216sin(π5)=√5−12⋅√16−(5−2√5+1)16sin(π5)=√5−12⋅√16−5+2√5−1)16sin(π5)=√5−12⋅√10+2√516sin(π5)=√(√5−1)24⋅(10+2√5)16sin(π5)=√(√5−1)2⋅(10+2√5)64sin(π5)=√(5−2√5+1)⋅(10+2√5)64sin(π5)=√60+12√5−20√5−4⋅564sin(π5)=√40−8√564sin(π5)=√8⋅5−8√58⋅8sin(π5)=√8⋅58⋅8−8√58⋅8sin(π5)=√58−√58
Please Lisa can you be careful to include ALL the information in your original question AND be careful to include all neccessasry brackets as well as any extra brackets that will help people to understand your question properly in the first place.
Otherwise people waste a lot of their time and next tme they may be less likely to offer you any help at all.
Thankyou everyone for your great answers :)
The same answer.
Using the same formula: sin(φ)=2⋅sinφ2⋅cosφ2
Given sin(π10)=(−1+√5)4
Find sin(π5)
Formula:
sin(φ)=2⋅sinφ2⋅cosφ2cosφ2=√1−sin2φ2sin(φ)=2⋅sinφ2⋅√1−sin2φ2
We set:
sinφ=sin(π5)sinφ2=sin(π10)=√5−14
sin(φ)=2⋅sinφ2⋅√1−sin2φ2sin(π5)=2⋅√5−14⋅√1−(√5−14)2sin(π5)=√5−12⋅√1−(√5−14)2sin(π5)=√5−12⋅√16−(√5−1)216sin(π5)=√5−12⋅√16−(5−2√5+1)16sin(π5)=√5−12⋅√16−5+2√5−1)16sin(π5)=√5−12⋅√10+2√516sin(π5)=√(√5−1)24⋅(10+2√5)16sin(π5)=√(√5−1)2⋅(10+2√5)64sin(π5)=√(5−2√5+1)⋅(10+2√5)64sin(π5)=√60+12√5−20√5−4⋅564sin(π5)=√40−8√564sin(π5)=√8⋅5−8√58⋅8sin(π5)=√8⋅58⋅8−8√58⋅8sin(π5)=√58−√58