Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
658
1
avatar

The Fibonacci numbers are defined recursively by the equation Fn=Fn1+Fn2
for every integer n2, with initial values F0=0 and F1=1. Let Gn=F3n be every third Fibonacci number. There are constants a and b such that every integer n2 satisfies Gn=aGn1+bGn2
Find (a,b).

 

(I put a lot of effort making all the latex properly so please help asap. THX)

 Feb 25, 2021
 #1
avatar+9675 
0

Both Melody and CPhill are offline now. I will try to answer that.

 

This means F3n=aF3n3+bF3n6 by the definition of G.

 

Then, we try some F3n,F3n3,F3n6. For this to be possible, we need the values of Fn from n = 0 up to n = 9.

 

F0=0F1=1F2=1F3=2F4=3F5=5F6=8F7=13F8=21F9=34

 

Then, using the equation on the first line of my solution and substituting n = 2 and n = 3,

 

{F6=aF3+bF0F9=aF6+bF3

 

Simplifying,

 

{2a=88a+2b=34

 

Solving gives a=4,b=1.

 

Therefore, (a,b)=(4,1).

 Feb 25, 2021

1 Online Users

avatar