Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
915
2
avatar+25 

Find the derivative of 

y = t/(sqrt(ct^2-1))

 Jun 5, 2014

Best Answer 

 #1
avatar+26396 
+6

The derivate of  y=t(ct21)=t(ct21)12

Product Rule: y=t(d(ct21)12dt)+d(t)dt(ct21)12

y^\prime=t *(-\frac{1}{\not{2}})(ct^2-1)^{-\frac{1}{2}-1}}*\not{2}ct + 1*(ct^2-1)^{-\frac{1}{2}}

y^\prime=-ct^2(ct^2-1)^{-\frac{3}{2}}} + (ct^2-1)^{-\frac{1}{2}}

y=1(ct21)ct2((ct21))3

y=1(ct21)(1ct2ct21)

 Jun 5, 2014
 #1
avatar+26396 
+6
Best Answer

The derivate of  y=t(ct21)=t(ct21)12

Product Rule: y=t(d(ct21)12dt)+d(t)dt(ct21)12

y^\prime=t *(-\frac{1}{\not{2}})(ct^2-1)^{-\frac{1}{2}-1}}*\not{2}ct + 1*(ct^2-1)^{-\frac{1}{2}}

y^\prime=-ct^2(ct^2-1)^{-\frac{3}{2}}} + (ct^2-1)^{-\frac{1}{2}}

y=1(ct21)ct2((ct21))3

y=1(ct21)(1ct2ct21)

heureka Jun 5, 2014
 #2
avatar+25 
0

Thank you Heureka 

 Jun 5, 2014

1 Online Users