The derivate of y=t√(ct2−1)=t∗(ct2−1)−12
Product Rule: y′=t∗(d(ct2−1)−12dt)+d(t)dt∗(ct2−1)−12
y^\prime=t *(-\frac{1}{\not{2}})(ct^2-1)^{-\frac{1}{2}-1}}*\not{2}ct + 1*(ct^2-1)^{-\frac{1}{2}}
y^\prime=-ct^2(ct^2-1)^{-\frac{3}{2}}} + (ct^2-1)^{-\frac{1}{2}}
y′=1√(ct2−1)−ct2(√(ct2−1))3
y′=1√(ct2−1)(1−ct2ct2−1)
The derivate of y=t√(ct2−1)=t∗(ct2−1)−12
Product Rule: y′=t∗(d(ct2−1)−12dt)+d(t)dt∗(ct2−1)−12
y^\prime=t *(-\frac{1}{\not{2}})(ct^2-1)^{-\frac{1}{2}-1}}*\not{2}ct + 1*(ct^2-1)^{-\frac{1}{2}}
y^\prime=-ct^2(ct^2-1)^{-\frac{3}{2}}} + (ct^2-1)^{-\frac{1}{2}}
y′=1√(ct2−1)−ct2(√(ct2−1))3
y′=1√(ct2−1)(1−ct2ct2−1)