In triangle ABC, point D lies on side AC such that line segment BD bisects angle ABC. Angle A measures 30 degrees, angle C measures 45 degrees, and the length of side AC is 10 units. Determine the area of triangle ABD.
Note that ∠BAD=∠CAD=12⋅30∘=15∘.
Considering the interior angle sum of △ADC gives ∠ADC=120∘.
Using Sine Law in △ADC gives
10sin120∘=ADsin45∘AD=10√63
Considering the angles around point D gives ∠ADB=60∘. Considering the interior angle sum of △ABD gives ∠ABD=105∘.
Using Sine Law in △ABC gives
10sin105∘=ABsin45∘AB=10(√3−1)
Then, the area of △ABD is 12(AB)(AD)sin15∘=12(10(√3−1))⋅10√63⋅√6−√24=50(2√3−3)3.
Angle ABC =105
Let AD = x CD = 10 - x
BC / sin 30 = AC /sin 105
BC /sin30 = 10 /sin105
BC = 5/sin105
BA / sin 45 = AC / sin 105
BA / sin45 = 10 /sin105
BA = (10/sqrt 2) / sin 105 = 20 / (1 + sqrt 3)
Since BD is a bisector, then
BA / AD = BC / CD
(10/sqrt2)/ sin 105 / x = 5/sin105 / (10-x)
(10/sqrt 2) (10-x) / sin 105 = 5x / sin105
(10/sqrt 2) (10 -x) = 5x
100/sqrt 2 - (10/sqrt 2)x = 5x
100/sqrt 2 = (5 + 10/sqrt 2) x
x = (100/sqrt 2) / ( 5 + 10/sqrt 2) = (100) / (5sqrt 2 + 10) = 20 / (2 + sqrt 2) = AD
[ABD ] = (1/2)BA * AD * sin 30 = (1/4) [20 / (1 + sqrt 3)] * [ 20 /(2 + sqrt 2) ] ≈ 10.72