Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
43
1
avatar+279 

In triangle $ABC$, let $I$ be the incenter of triangle $ABC$. The line through $I$ parallel to $BC$ intersects $AB$ and $AC$ at $M$ and $N$, respectively. If $AB = 5$, $AC = 5$, and $BC = 8$, then find the area of triangle $AMN$.

 Apr 17, 2024
 #1
avatar+15068 
+1

 Find the area of triangle AMN.

 

¯AB=c=5,¯AC=b=5 and ¯BC=a=8

 

A=s(sa)(sb)(sc) Herons formulas=a+b+c2=8+5+52=9AABC=9(98)(95)(95)AABC=144Any line through the center of gravity of a triangle divides it into equal parts.AAMN=12AABC=12144AAMN=72

 

laugh  !

 Apr 17, 2024
edited by asinus  Apr 18, 2024

5 Online Users

avatar
avatar
avatar