In right triangle ABC, we have angle BAC = 90° and D is the midpoint of line AC. If AB = 7 and BC = 25, then what is tan of angle BDC?
Use Pythagoras theorem:
AC=√252−72=24
CD=DA=12(mid point)
Use Pythagoras theorem again:
BD=√72+122=√193
Find the sin of angle BCD:
sin∠BCD=sin∠BCA=725(angle BCD and angle BCA refers to the same angle)
Use law of sines on triangle BCD:
BDsin∠BCD=BCsin∠BDC√193725=25sin∠BDCsin∠BDC=25×725√193=7√193
Construct a right-angled triangle with
legs = 7, -12(<-- negative because the angle is in the 2nd quadrant), hypotenuse=sqrt193
tan∠BDC=−712
Quicker way:
angle BDC = 90 deg + angle DBA
tan(a+b)=sin(a+b)cos(a+b)=sinacosb+cosasinbcosacosb−sinasinb=tana+tanb1−tanatanb
But because tan 90 deg does not have a meaning, we use the old definition:
tan90∘=10
So
1tan90∘=0
tan∠BDC=tan(90∘+∠DBA)=tan90∘+tan∠DBA1−tan90∘tan∠DBA=1+tan∠DBAtan90∘1tan90∘−tan∠DBA=1+0tan∠DBA0−tan∠DBA=−1tan∠DBA
AC = 24 using Pyth. thm. <-- I am lazy in typing
AD = 24/2 = 12
So tan angle DBA = 12/7
So tan angle BDC = -1/tan angle DBA = -7/12 <-- done :)