Processing math: 100%
 
+0  
 
0
1311
4
avatar

In right triangle ABC, we have angle BAC = 90° and D is the midpoint of line AC. If AB = 7 and BC = 25, then what is tan of angle BDC?

 Jun 11, 2017
 #1
avatar
0

BTW I need this quick! :)

 Jun 11, 2017
 #2
avatar+9675 
+1

Use Pythagoras theorem:

AC=25272=24

CD=DA=12(mid point)

Use Pythagoras theorem again:

BD=72+122=193

Find the sin of angle BCD:

sinBCD=sinBCA=725(angle BCD and angle BCA refers to the same angle)

Use law of sines on triangle BCD:

BDsinBCD=BCsinBDC193725=25sinBDCsinBDC=25×725193=7193

Construct a right-angled triangle with

legs = 7, -12(<-- negative because the angle is in the 2nd quadrant), hypotenuse=sqrt193

tanBDC=712

 Jun 11, 2017
 #3
avatar+9675 
+1

Quicker way:

angle BDC = 90 deg + angle DBA

tan(a+b)=sin(a+b)cos(a+b)=sinacosb+cosasinbcosacosbsinasinb=tana+tanb1tanatanb

But because tan 90 deg does not have a meaning, we use the old definition:

tan90=10

So 

1tan90=0

tanBDC=tan(90+DBA)=tan90+tanDBA1tan90tanDBA=1+tanDBAtan901tan90tanDBA=1+0tanDBA0tanDBA=1tanDBA

AC = 24 using Pyth. thm. <-- I am lazy in typing

AD = 24/2 = 12

So tan angle DBA = 12/7

So tan angle BDC = -1/tan angle DBA = -7/12 <-- done :)

 Jun 11, 2017
 #4
avatar+130466 
+1

 

Since BDA and BDC are supplemental, tan( BDA)   =  - tan (BDC) →  - tan (BDA)  = tan (BDC)

 

Using right angle trigonometry,  tan (BDA)  =  7/12

 

So  -tan(BDA)  =  -7/12  = tan (BDC)

 

 

cool cool cool

 Jun 11, 2017

0 Online Users