In \triangle ABC, we have AB = AC = 4 and \angle BAC = 45^\circ. If M is the midpoint of BC, then find AM^2.
If M is the midpoint of BC, then find AM^2.
sin (22.2∘)=¯BM4¯BM=4 sin (22.5∘)¯AM2=42−¯BM2=16−16 sin2 (22.5∘)=16 (1−sin2 (22.5∘))¯AM2=13.657
!