Find the coordinates of the center of the circle.
The points on the circle are (22,15), (-25,0), (22,-29).
Find the coordinates of the center of the circle.
A{22,15}B{−25,0}C{22,−29}
fmAC(x)=yA+yB2=15−292fmAC(x)=−7PmAB{xA+xB2,yA+yB2}={22−252,15+02}PmAB{−1.5,7.5}
mAB=yA−yBxA−xB=15−022+25=0.3191mmAB=−1mAB=−3.13¯3fmAB(x)=mmAB(x−xPmAB)+yPmABfmAB(x)=−3.13¯3(x+1.5)+7.5fmAB(x)=−3.13¯3x+2.8
fmAB(x)=fmAC(x)−3.13¯3x+2.8=−7−3.13¯3x=−9.8x∘=3.12766y∘=fmAC(x)y∘=−7
The coordinates of the center of the circle are P0 (3.12766,−7).
!