Processing math: 100%
 
+0  
 
+1
733
2
avatar+569 

Let A, B, C be points on circle O such that AB is a diameter, and CO is perpendicular to AB. Let P be a point on OA, and let line CP intersect the circle again at Q. If OP = 20 and PQ = 7, find r^2, where r is the radius of the circle.

 

thanks to anyone who answers!

~ iamhappy :)

 Feb 25, 2021
edited by iamhappy  Feb 25, 2021
 #1
avatar+9675 
+2

Let r be the radius.

 

Then OA = OB = OC = r.

 

By Pythagorean theorem, 

CP2=OP2+OC2CP2=202+r2CP=r2+400

 

Then,

AP=AOOP=r20BP=BO+OP=r+20

 

Consider the power of point P.

 

CPPQ=APPB7r2+400=(r20)(r+20)49(r2+400)=(r2400)2(r2)2800r2+16000049r219600=0(r2)2849r2+140400=0

 

Using quadratic formula,

 

r2=849±84924(140400)2r2=225(rejected) or r2=624

 Feb 25, 2021
 #2
avatar+1490 
+4

Let A, B, C be points on circle O such that AB is a diameter, and CO is perpendicular to AB. Let P be a point on OA, and let line CP intersect the circle again at Q. If OP = 20 and PQ = 7, find r^2, where r is the radius of the circle.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OP = 20        PQ = 7         CP = sqrt(r2 + 202)        AP = r - 20         PB = r + 20

 

PQ * CP = AP * PB

 

7 * sqrt(r2 + 202) = (r - 20)(r + 20)

 

r = 4√39           r2 = 624

 Feb 25, 2021

2 Online Users

avatar