Processing math: 100%
 
+0  
 
0
1389
4
avatar

Given that p7 is a prime number, evaluate 1121+2131+3141++(p2)1(p1)1(modp).

 Jul 8, 2017
 #1
avatar+9675 
0

1121+2131+...+(p2)1(p1)1=12+16+...+1(p1)(p2)=(112)+(1213)+...+(1p11p2)=11p2=p3p2

So our work is to evaluate

p3p2(modp).

 

Don't know how to do that, if I were you, I would try some primes.

So let's try it.

 

When p = 7,

p3p2(modp)=45mod7=1215mod7=5

 

When p = 11,

p3p2(modp)=89(mod11)=4045(mod11)=7

 

When p = 13,

p3p2(modp)=1011(mod13)=6066(mod13)=8

 

When p = 17,

1415(mod17)=112120(mod17)=10

 

Welp can't see a pattern :(

 Jul 11, 2017
 #2
avatar
0

a mod b- the remainder of the division a/b.

 

(P-3)/(P-2) mod P- the remainder of the division ((P-3)/(P-2))/P. P>(P-3)/(P-2),

 

therefore ((P-3)/(P-2))/P<1, therefore (P-3)/(P-2) mod P=(P-3)/(P-2)-P*0=(P-3)/(P-2)

 Jul 11, 2017
edited by Guest  Jul 11, 2017
edited by Guest  Jul 11, 2017
 #3
avatar+9675 
0

Guest, 

We can still get a 'proper' answer with a fraction.

Example:

417(mod13)27(mod13) because 41 mod 13 = 2414(mod13)41(mod13) similarly, because 14 mod 13 = 14(mod13)4

Or

ab(modc)We first find numbers m and n that bm=cn+1=ambm(modc)=amcn+1(modc)=am(modc) (because (cn + 1) mod c = 1)So we find the answer.

MaxWong  Jul 12, 2017
 #4
avatar
0

Hi Max

Your partial fractions, line 3, are the wrong way round, should be  1p21p1, it works out nicely after that.

 

Tiggsy

 Jul 12, 2017

2 Online Users

avatar
avatar