Processing math: 100%
 
+0  
 
+1
20
1
avatar+86 

Given constants a, b, and c, let α and β be solutions to the equations acosθ+bsinθ=c which do not differ by a multiple of 2π. Express cos2(αβ2) in terms of a, b, and c.

 May 13, 2024
 #1
avatar+9675 
-1

By half angle formula, we have 

 

cos2αβ2=12(1+cos(αβ))

 

Since α and β do not differ by a multiple of 2π, that means sinαsinβ are distinct, and cosαcosβ are distinct. 

From the equation, we have

bsinθ=cacosθb2sin2θ=c2+a2cos2θ2accosθb2b2cos2θ=c2+a2cos2θ2accosθ(a2+b2)cos2θ2accosθ+(c2b2)=0

Then by Vieta's formula, cosαcosβ=c2b2a2+b2.

 

Similarly, we have

acosθ=cbsinθa2cos2θ=c2+b2sin2θ2bcsinθa2a2sin2θ=c2+b2sin2θ2bcsinθ(a2+b2)sin2θ2bcsinθ+(c2a2)=0

Then sinαsinβ=c2a2a2+b2.

 

Hence, we have cos(αβ)=c2a2(c2b2)a2+b2=1, so cos2αβ2=12(1+1)=1.

 May 13, 2024

2 Online Users