Processing math: 100%
 
+0  
 
0
167
3
avatar+4 

Compute the value of 15+325+7125+15625+313125+.

 Mar 11, 2023
 #1
avatar
0

The given series is a geometric series with first term a and common ratio r.

Here, a = 1/5 and r = 3/5.

Using the formula for the sum of an infinite geometric series with |r| < 1, we have:

Sum = a / (1 - r)

Sum = (1/5) / (1 - 3/5)

Sum = (1/5) / (2/5)

Sum = 1/2

Therefore, the sum of the given series is 1/2.

 Mar 11, 2023
 #2
avatar
0

∑[5^-n * (-1 + 2^n), n, 1, ∞ ]==5 / 12 ==0.4166667

 Mar 11, 2023
 #3
avatar+118703 
+1

 

Hi Aiden

 

15+325+7125+15625+313125+.

 

I can see that the bottom is  5^n

what about the top?

 

1,3,7,15,31    the didifferences between these is  2,4,8,16    each being a increasing power of 2

so the top is     2^n - 1

 

so we have

 

n=12n15n =n=1(25)nn=1(15)n

 

You should be able to take it from there.

 Mar 12, 2023

1 Online Users

avatar