f(x)=(g⋅h)(x)
g(x)=18x
h(x)=14x3
First Question is:
g′(x)=18xx−1
Is that right and simplified?
Second Question is: what is z(x)
f″(x)=z(x)
Given g(x)= 18x
First Question: Find the derivative of g(x)=18x
g(x)=18x|ln() both sides ln( g(x) )=ln(18x)|Formula: ln(ab)=b⋅ln(a)ln( g(x) )=x⋅ln(18)|derivate both sides Formula: ( ln( g(x) ) )′=g′(x)g(x)g′(x)g(x)=ln(18)|⋅g(x)g′(x)=g(x)⋅ln(18)|g(x)=18xg′(x)=18x⋅ln(18)
For 2nd question:
First find f(x):
f(x)=(g⋅h)(x)=g(x)⋅h(x)=(18x)(14x3)
Then find f '(x):
In this case we use product rule:
f′(x)=(18x)′(14x3)+(18x)(14x3)′=14ln18⋅18x⋅x3+18x⋅42x2
Let us call the part before plus sign (1) and the part after plus sign (2)
Differentiate (1):
(1)′=14ln18((18x)′(x3)+(18x)(x3)′)=14ln18(x3⋅18xln18+3⋅18x⋅x2)
Differentiate (2):
(2)′=(18x)′(42x2)+(18x)(42x2)′=42ln18⋅18x⋅x2+84⋅18x⋅x
Add up (1)' and (2)'
z(x)=(1)′+(2)′=14ln18(x3⋅18xln18+3⋅18x⋅x2)+42ln18⋅18x⋅x2+84⋅18x⋅x=14x218xln18(x+3)+42x⋅18x(xln18+2)