Processing math: 100%
 
+0  
 
0
30
1
avatar+2729 

Find all ordered pairs x, y of real numbers such that x + y = 10 and x^2 + y^2 = x^3 + y^3.


For example, to enter the solutions (2, 4) and (-3, 9), you would enter "(2,4),(-3,9)" (without the quotation marks).

 May 1, 2024
 #1
avatar+9675 
0

Suppose xy=a. Then,

x2+y2=(x2+2xy+y2)2xy=(x+y)22xy=1002a

x3+y3=(x+y)33xy(x+y)=100030a

 

So the second equation is equivalent to 

1002a=100030a28a=900a=2257xy=2257x=2257y

 

Substituting this into x + y = 10, we have

 

y+2257y=107y270y+225=0

 

Checking the discriminant of this equation, Δ=(70)24(7)(225)=1400<0.

 

Therefore, there are no real solutions.

 May 1, 2024

3 Online Users

avatar
avatar