Processing math: 100%
 
+0  
 
0
860
1
avatar

Let be k the smallest positive integer such that the binomial coefficient (109k) is less than the binomial coefficient(109+1k1). Let a be the first (from the left) digit of and let b be the second (from the left) digit of k. What is the value of 10a+b?

 Feb 4, 2019
 #1
avatar+9675 
+3

(109k)<(109+1k1)(109)!k!(109k)!<(109+1)!(k1)!((109+1)(k1))!1k(109k)!<109+1(109k+2)!(109k+1)(109k+2)<(109+1)k15000000021250000003000000002<k<1500000002+1250000003000000002

Smallest positive integer k that satisfies the inequality is 381966012. (Used some computational intelligence :P)

10a + b = 38. :)

 Feb 4, 2019

2 Online Users