Simplify sin(sin−135+tan−12).
Hello Guest!
sin(1sin(35)+1tan(2))=sin(csc(35)+1tan(2))=sin(±√1+tan2(35)tan(35)+1tan(2))
I dont get any further.
!
Assuming sin−1x and tan−1x means inverse trigonometric functions,
sin(sin−135+tan−12)=sin(tan−134+tan−12)=sintan−134costan−12+costan−134sintan−12=351√5+452√5=115√5