Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
824
2
avatar

Let a, b, c be real numbers such that a + b + c = 1. Find the minimum value of 2a2+3b2+6c2.

 Sep 1, 2019
 #1
avatar+4623 
+3

Try to use Cauchy-Schwarz Inequality because of the sum of squares. 

 Sep 2, 2019
 #2
avatar+26398 
+3

Let a, b, c be real numbers such that a+b+c=1.

Find the minimum value of 2a2+3b2+6c2.

 

Schwarz Inequality:

(x21+x22++x2n)(y21+y22++y2n)(x1y1+x2y2+xnyn)2(12+13+16)(2a2+3b2+6c2)(122a+133b+166c)2(12+13+16)(2a2+3b2+6c2)(a+b+c)2(12+13+16=1)(2a2+3b2+6c2)(a+b+c=1)22a2+3b2+6c2122a2+3b2+6c21

 

The minimum value of 2a2+3b2+6c2is 1

 

laugh

 Sep 2, 2019

0 Online Users