Let a, b, c be real numbers such that a + b + c = 1. Find the minimum value of 2a2+3b2+6c2.
Let a, b, c be real numbers such that a+b+c=1.
Find the minimum value of 2a2+3b2+6c2.
Schwarz Inequality:
(x21+x22+…+x2n)(y21+y22+…+y2n)≥(x1y1+x2y2+…xnyn)2(12+13+16)(2a2+3b2+6c2)≥(1√2√2a+1√3√3b+1√6√6c)2(12+13+16)(2a2+3b2+6c2)≥(a+b+c)2(12+13+16⏟=1)(2a2+3b2+6c2)≥(a+b+c⏟=1)22a2+3b2+6c2≥122a2+3b2+6c2≥1
The minimum value of 2a2+3b2+6c2is 1