Processing math: 100%
 
+0  
 
0
169
3
avatar

Find the maximum value of

7 cos (θ) + 24 sin (θ) + 7,

where θ ∈ R.

 Mar 11, 2023
 #1
avatar
-1

By Cauchy Schwarz,

(7 + 24 + 7)(7 cos t + 24 sin t + 7) <=  (7^2 + 24^2 + 7^2),

so 7 cos t + 24 sin t + 7 <= 337/19.

 

The maximum value is 337/19.

 Mar 11, 2023
 #2
avatar+33660 
+1

As follows:

 

 Mar 11, 2023
 #3
avatar+397 
+2

Here's a non calculus approach.

Begin by noticing that

72+242=49+576=625=252,

so 7, 24, 25 can be used to as the sides of a right-angled triangle.

Let the angle opposite the 7 be ϕ,

then

sinϕ=7/25 and cosϕ=24/25.

 

7cosθ+24sinθ+7=25(725cosθ+2425sinθ)+7=25(sinϕcosθ+cosϕsinθ)+7=25sin(θ+ϕ)+7.

 

Maximum value will be 25 + 7 = 32 occuring when

 sin(θ+ϕ)=1,θ=π/2tan1(7/24),0θπ/2.

 Mar 11, 2023

0 Online Users