By Cauchy Schwarz,
(7 + 24 + 7)(7 cos t + 24 sin t + 7) <= (7^2 + 24^2 + 7^2),
so 7 cos t + 24 sin t + 7 <= 337/19.
The maximum value is 337/19.
Here's a non calculus approach.
Begin by noticing that
72+242=49+576=625=252,
so 7, 24, 25 can be used to as the sides of a right-angled triangle.
Let the angle opposite the 7 be ϕ,
then
sinϕ=7/25 and cosϕ=24/25.
7cosθ+24sinθ+7=25(725cosθ+2425sinθ)+7=25(sinϕcosθ+cosϕsinθ)+7=25sin(θ+ϕ)+7.
Maximum value will be 25 + 7 = 32 occuring when
sin(θ+ϕ)=1,θ=π/2−tan−1(7/24),0≤θ≤π/2.