Processing math: 100%
 
+0  
 
-1
2970
3
avatar+87 

1. Find all r for which the infinite geometric series 2+6r+18r2+54r3+
is defined. Enter all possible values of r as an interval.

 

2. Compute 12+34++20052006+2007

 

3. Let f(x)=x2x21 Find the largest integer n so that f(2)f(3)f(4)f(n1)f(n)<1.98

 Dec 6, 2019
 #1
avatar
0

1. You want the geometric series to converge, so -1 < r < 1.

 

2. 1 - 2 + 3 - 4 + ... + 2005 - 2006 + 2007 = (1 - 2) + (3 - 4) + ... + (2005 - 2006) + 2007 = 1002.

 

3. The product will telescope, and you are left with n/(n - 1), so you want n/(n - 1) < 1.98.  The largest n that satisfies this is n = 201.

 Dec 6, 2019
 #2
avatar+9675 
+4

1)
Common ratio = 6r2 = 3r

 

-1 < (Common ratio) < 1

 

-1 < 3r < 1

 

13<r<13

 Dec 6, 2019
 #3
avatar+9675 
+3

2)

Consider the pairwise sum of terms.

 

12+34++20052006+2007=(12)+(34)++(20052006)+2007=1+(1)++(1)+2007There are in total 20062=1003 pairs that sums to 1.=1(1003)+2007=1004

 Dec 6, 2019

1 Online Users