{a+b+c+d=14a+b+c+e=15a+b+d+e=17a+c+d+e=18b+c+d+e=20
If a,b,c,d and e satisfy the system of equations above, find the product abcde .
help
{a+b+c+d=14a+b+c+e=15a+b+d+e=17a+c+d+e=18b+c+d+e=20
If a,b,c,d and e satisfy the system of equations above, find the product abcde .
(1)a+b+c+d=14(2)a+b+c+e=15(3)a+b+d+e=17(4)a+c+d+e=18(5)b+c+d+e=20
(2)−(1)e−d=15−14e−d=1d=e−1(3)−(1)e−c=17−14e−c=3c=e−3(4)−(1)e−b=18−14e−b=4b=e−4(5)−(1)e−a=20−14e−a=6a=e−6(3)−(2)d−c=17−15d−c=2c=d−2(4)−(2)d−b=18−15d−b=3b=d−3(5)−(2)d−a=20−15d−a=5a=d−5(4)−(3)c−b=18−17c−b=1b=c−1(5)−(3)c−a=20−17c−a=3a=c−3
d=e−1c=e−3b=e−4a=e−6(1)a+b+c+d=14e−6+e−4+e−3+e−1=144e−14=144e=28|:4e=7
c=d−2b=d−3a=d−5(2)a+b+c+e=15|e=7a+b+c+7=15a+b+c=15−7a+b+c=8d−5+d−3+d−2=83d−10=83d=18|:3d=6
b=c−1a=c−3(3)a+b+d+e=17|e=7, d=6a+b+6+7=17a+b+13=17a+b=17−13c−3+c−1=42c−4=42c=8|:2c=4
(4)a+c+d+e=18|e=7, d=6, c=4a+4+6+7=18a+17=18a=18−17a=1
(5)b+c+d+e=20|e=7, d=6, c=4b+4+6+7=20b+17=120b=20−17b=3
abcde=1∗3∗4∗6∗7abcde=504