Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
575
2
avatar

{a+b+c+d=14a+b+c+e=15a+b+d+e=17a+c+d+e=18b+c+d+e=20

 

If a,b,c,d and e satisfy the system of equations above, find the product abcde . 

 Jul 9, 2020
 #1
avatar+26396 
+2

help
{a+b+c+d=14a+b+c+e=15a+b+d+e=17a+c+d+e=18b+c+d+e=20
If a,b,c,d and e satisfy the system of equations above, find the product abcde .

 

(1)a+b+c+d=14(2)a+b+c+e=15(3)a+b+d+e=17(4)a+c+d+e=18(5)b+c+d+e=20

 

(2)(1)ed=1514ed=1d=e1(3)(1)ec=1714ec=3c=e3(4)(1)eb=1814eb=4b=e4(5)(1)ea=2014ea=6a=e6(3)(2)dc=1715dc=2c=d2(4)(2)db=1815db=3b=d3(5)(2)da=2015da=5a=d5(4)(3)cb=1817cb=1b=c1(5)(3)ca=2017ca=3a=c3

 

d=e1c=e3b=e4a=e6(1)a+b+c+d=14e6+e4+e3+e1=144e14=144e=28|:4e=7

 

c=d2b=d3a=d5(2)a+b+c+e=15|e=7a+b+c+7=15a+b+c=157a+b+c=8d5+d3+d2=83d10=83d=18|:3d=6

 

b=c1a=c3(3)a+b+d+e=17|e=7, d=6a+b+6+7=17a+b+13=17a+b=1713c3+c1=42c4=42c=8|:2c=4

 

(4)a+c+d+e=18|e=7, d=6, c=4a+4+6+7=18a+17=18a=1817a=1

 

(5)b+c+d+e=20|e=7, d=6, c=4b+4+6+7=20b+17=120b=2017b=3

 

abcde=13467abcde=504

 

laugh

 Jul 9, 2020
 #2
avatar+9675 
0

Adding the 5 equations:

 

4(a + b + c + d + e) = 84

a + b + c + d + e = 21 --- (*)

 

Subtracting each equation from (*),

 

e = 21 - 14 = 7

d = 21 - 15 = 6

c = 21 - 17 = 4

b = 21 - 18 = 3

a = 21 - 20 = 1

 

abcde = 1(3)(4)(6)(7) = 504

 Jul 9, 2020

1 Online Users