Processing math: 100%
 
+0  
 
0
885
2
avatar

 Let a, b, c be the roots of x^3 - 17x - 19.  Find a^3 + b^3 + c^3.

 Nov 27, 2019
 #1
avatar+4625 
+2

This involves factoring from Vieta's Formulas:

 

The first step is to break a3+b3+c3 into 3r1r2r3+(r1+r2+r3)[r21+r22+r23(r1r2+r2r3+r3r1).

 

The confusing part might be trying to find r21+r22+r23, yet we know that is equal to (r1+r2+r3)22(r1r2+r2r3+r3r1).

 

This can be better written as 3r1r2r3+(r1+r2+r3)[(r1+r2+r3)23(r1r2+r2r3+r3r1)].

 

Remember that r1,r2, and r3 are the roots of the polynomial which is an expression.

 

Note that r1+r2+r3=ba , r1r2+r2r3+r3r1=ca, and  r1r2r3=da.

 

Try to plug the values in, and be careful and don't forget the x2 term.

 Nov 27, 2019
 #2
avatar+26397 
+3

 Let a, b, c be the roots of x317x19.  Find a3+b3+c3.

 

x317x19=x3+0x217x19vieta:0=(a+b+c)a+b+c=017=ab+ac+bcab+ac+bc=1719=abcabc=19

 

 Formula:

a3+b3+c3=3abc=19+(a+b+c)=0(a2+b2+c2(ab+bc+ca))a3+b3+c3=3×19a3+b3+c3=57

 

laugh

 Nov 28, 2019

2 Online Users