One of the roots of (x^2 + 1)/x + x/(x^2 + 1) = 29/10 is (1 + sqrt(k))/5, where k is a negative integer. Find k.
x2+1x+xx2+1=2910Let u=xx2+1.u+1u=291010u2+10−29u=0(2u−5)(5u−2)=0u=52 or u=25xx2+1(1)=52 or xx2+1(2)=25Consider equation (1),5x2+5=2x5x2−2x+5=0x=2±√22−4(5)22(5)x=1±√−245Consider equation (2),2x2+2=5x2x2−5x+2=0(2x−1)(x−2)=0All roots are purely real.The required integer is −24.
.