Processing math: 100%
 
+0  
 
0
904
3
avatar

An equilateral triangle of side length 2 units is inscribed in a circle. Find the length of a chord of this circle which passes through the midpoints of two sides of the triangle.

 

 Jun 15, 2020
 #1
avatar
+1

The length of a chord is  2.236067977 smiley

 Jun 16, 2020
 #3
avatar+1490 
+3

An equilateral triangle of side length 2 units is inscribed in a circle. Find the length of a chord of this circle which passes through the midpoints of two sides of the triangle.

 

BC = 2       BQ = 1       ∠B = 60º

 

Height       AQ = tan(B) * BQ = 1.732050808

 

AO = 2/3 * AQ = 1.154700537              AO = XO

 

AP = AQ / 2 = 0.866025402

 

PO = AO - AP = 0.288675134

 

XP = sqrt( XO² - PO² ) = 1.118033987

 

XY = 2 * XP = 2.236067975     indecision

 

 

Dragan  Jun 17, 2020
 #2
avatar+26398 
+3

An equilateral triangle of side length 2 units is inscribed in a circle.

Find the length of a chord of this circle which passes through the midpoints of two sides of the triangle.

 

In COD r= ?22=r2+r22rrcos(120)4=2r2(1cos(120))2=r2(1cos(120))|cos(120)=122=r2(1+12)2=32r2r2=43In OED h= ?1+h2=r2h2=r21|r2=43h2=431h2=13h2=13h=13

 

cos-rule:

In OEB x= ?r2=h2+x22hxcos(90+60)r2=h2+x22hxcos(150)|r2=43, h2=1343=13+x22hxcos(150)|h=13, cos(150)=321=x2+23x321=x2+xx2+x1=0x=1±124(1)2x=1±52x=1+52x=512

 

length of chord =1+2x1+2x=1+2(51)2=1+51=5

 

The length of the chord is 5(=2.23606797750)

 

laugh

 Jun 16, 2020

2 Online Users

avatar
avatar