Let a, b, and c be positive integers such that a is the cube of an integer, c = b + 1, and a^2 + b^2 = c^2. Find the least possible value of c.
a2+b2=c2a2+b2=(b+1)22b+1=a2Let a=k3,k6−1=2bk6−1≡0(mod2)⟹k≡1(mod2)Exhaust k.When k=1,b=0(rejected)When k=3,b=364c=364+1=365Check:a2+3642=3652a=729=93