Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1063
4
avatar

I have a question!

 

Help with this problem?? It is in FRACTION form at the end:

 

Given: 

sin a= -21/29 , with 3pie/2 <a <2pie

and

tan B= -24/7 ,with pie/2 <B< pie

 

Find cos(a+b)

 Feb 2, 2017

Best Answer 

 #2
avatar+26396 
+15

Given: 

sin a= -21/29 , with 3pie/2 <a <2pie

and

tan B= -24/7 ,with pie/2 <B< pie

 

Find cos(a+b)

 

 

1.

sin(a)=2129, with 3π2<a<2πIV. Quadranta=arcsin(2129)a=0.80978357257 rad (46.3971810273)

 

2.

tan(b)=247, with π2<b<πII. Quadrantb=arctan(247)b=1.28700221759+π(II. Quadrant)b=1.85459043600 rad (106.260204708)

 

3.

cos(a+b)=cos(0.80978357257 rad+1.85459043600 rad )=cos(1.04480686343 rad )cos(a+b)=0.50206896552

 

 

laugh

 Feb 2, 2017
 #1
avatar+15068 
+5

Given: 

sin a= -21/29 , with 3pie/2 <a <2pie

and

tan B= -24/7 ,with pie/2 <B< pie

 

Find cos(a+b)

 

3π2<α<2π      4.712..<α<6.2831..

 

sinα=2129=0.72413..  

 

 

α=arcsin(2129)=0.80978..+2π=5.47340.. 

 

3π2<5.47340<2π 

 

 

3π2<β<2π

 

 

tanβ=247=3.42857.. 

 

β=arctan(247)=1.287..+2π=4.99618.. 

 

3π2<4.99618<2π

 

cos(α+β)=cos(arcsin(2129)+arctan(247))

 

cos(α+β)=cos(5.47340173461+4.99618308959) 

 

cos(α+β)=0.502068965519

 

laugh  !

 Feb 2, 2017
edited by asinus  Feb 2, 2017
 #2
avatar+26396 
+15
Best Answer

Given: 

sin a= -21/29 , with 3pie/2 <a <2pie

and

tan B= -24/7 ,with pie/2 <B< pie

 

Find cos(a+b)

 

 

1.

sin(a)=2129, with 3π2<a<2πIV. Quadranta=arcsin(2129)a=0.80978357257 rad (46.3971810273)

 

2.

tan(b)=247, with π2<b<πII. Quadrantb=arctan(247)b=1.28700221759+π(II. Quadrant)b=1.85459043600 rad (106.260204708)

 

3.

cos(a+b)=cos(0.80978357257 rad+1.85459043600 rad )=cos(1.04480686343 rad )cos(a+b)=0.50206896552

 

 

laugh

heureka Feb 2, 2017
 #3
avatar+130466 
0

sin A =  -21/29

cos A  = 20/29

 

sin B = 24/25

cos B = -7/25

 

cos ( A + B) =

 

cos(A)cos(B) - sin(A)sin(B) =

 

[20/29 * -7/25]   -  [-21/29 * 24/25 ]  =

 

[ -140 + 504 ] / 725  =

 

364 / 725  ≈  0.5020689655172414

 

 

 

cool cool cool

 Feb 2, 2017
 #4
avatar+9675 
0

Given: sina=2129,3π2<a<2πtanb=247,π2<b<π

 

 

Note that: cos(a+b)=cosacosbsinasinb

 

So that we have to find cos a, cos b, sin b because the value of sin a is given.

 

A few formulae: cos(arcsinx)=1x2cos(arctanx)=11+x2sin(arctanx)=x1+x2

 

To find cos a:

 

cosa=cos(arcsin(sina))=1sin2a=1(2129)2=292212292=202292=2029

 

To find cos b:

cosb=cos(arctan(tanb))=11+tan2b=11+57649=162549=1257=725

 

To find sin b:

sinb=sin(arctan(tanb))=tanb1+tan2b=2471+57649=24762549=247257=2425

 

cos a = 20/29, cos b = 7/25, sin b = -24/25, sin a = -21/29

 

To find cos(a + b):

cos(a+b)=cosacosbsinasinb=(2029)(725)(2129)(2425)=(140725)(504725)=364725

 Feb 2, 2017

3 Online Users

avatar