I have a question!
Help with this problem?? It is in FRACTION form at the end:
Given:
sin a= -21/29 , with 3pie/2 <a <2pie
and
tan B= -24/7 ,with pie/2 <B< pie
Find cos(a+b)
Given:
sin a= -21/29 , with 3pie/2 <a <2pie
and
tan B= -24/7 ,with pie/2 <B< pie
Find cos(a+b)
1.
sin(a)=−2129, with 3π2<a<2πIV. Quadranta=arcsin(−2129)a=−0.80978357257 rad (−46.3971810273∘)
2.
tan(b)=24−7, with π2<b<πII. Quadrantb=arctan(24−7)b=−1.28700221759+π(II. Quadrant)b=1.85459043600 rad (106.260204708∘)
3.
cos(a+b)=cos(−0.80978357257 rad+1.85459043600 rad )=cos(1.04480686343 rad )cos(a+b)=0.50206896552
Given:
sin a= -21/29 , with 3pie/2 <a <2pie
and
tan B= -24/7 ,with pie/2 <B< pie
Find cos(a+b)
3π2<α<2π 4.712..<α<6.2831..
sinα=−2129=0.72413..
α=arcsin(−2129)=−0.80978..+2π=5.47340..
3π2<5.47340<2π
3π2<β<2π
tanβ=−247=−3.42857..
β=arctan(−247)=−1.287..+2π=4.99618..
3π2<4.99618<2π
cos(α+β)=cos(arcsin(−2129)+arctan(−247))
cos(α+β)=cos(5.47340173461+4.99618308959)
cos(α+β)=−0.502068965519
!
Given:
sin a= -21/29 , with 3pie/2 <a <2pie
and
tan B= -24/7 ,with pie/2 <B< pie
Find cos(a+b)
1.
sin(a)=−2129, with 3π2<a<2πIV. Quadranta=arcsin(−2129)a=−0.80978357257 rad (−46.3971810273∘)
2.
tan(b)=24−7, with π2<b<πII. Quadrantb=arctan(24−7)b=−1.28700221759+π(II. Quadrant)b=1.85459043600 rad (106.260204708∘)
3.
cos(a+b)=cos(−0.80978357257 rad+1.85459043600 rad )=cos(1.04480686343 rad )cos(a+b)=0.50206896552
sin A = -21/29
cos A = 20/29
sin B = 24/25
cos B = -7/25
cos ( A + B) =
cos(A)cos(B) - sin(A)sin(B) =
[20/29 * -7/25] - [-21/29 * 24/25 ] =
[ -140 + 504 ] / 725 =
364 / 725 ≈ 0.5020689655172414
Given: sina=−2129,3π2<a<2πtanb=−247,π2<b<π
Note that: cos(a+b)=cosacosb−sinasinb
So that we have to find cos a, cos b, sin b because the value of sin a is given.
A few formulae: cos(arcsinx)=√1−x2cos(arctanx)=1√1+x2sin(arctanx)=x√1+x2
To find cos a:
cosa=cos(arcsin(sina))=√1−sin2a=√1−(−2129)2=√292−212292=√202292=2029
To find cos b:
cosb=cos(arctan(tanb))=1√1+tan2b=1√1+57649=1√62549=1257=725
To find sin b:
sinb=sin(arctan(tanb))=tanb√1+tan2b=−247√1+57649=−247√62549=−247257=−2425
cos a = 20/29, cos b = 7/25, sin b = -24/25, sin a = -21/29
To find cos(a + b):
cos(a+b)=cosacosb−sinasinb=(2029)(725)−(−2129)(−2425)=(140725)−(504725)=−364725