14^15 mod 15
14^1 mod 15 = 14
14^2 mod 15 = 1
14^3 mod 15 = 14
14^4 mod 15 = 1
.
We can see that 14^(2n+1) mod 15 = 14 and 14^(2n) mod 15 = 1
So that 14^15 mod 15 = 14. :D
Now take an attempt on this problem:
14(1+2+3+4+5+6+...+107)(mod15)=??
1+2+3+4+5+6...........+ 107 = [107 x 108] / 2 =5,778. So we have: 14^5,778 mod 15 =1
1415(mod15)= ?1415(mod15)|14≡−1(mod15)≡(−1)15(mod15)|(−1)15=−1≡−1(mod15)≡−1+15(mod15)≡14(mod15)1415(mod15)=14