Processing math: 100%
 
+0  
 
0
1468
2
avatar

1. For how many $n=2,3,4,\ldots,99,100$ is the base-$n$ number $235236_n$ a multiple of $7$?

 

 

 

2.What is the smallest base-10 integer that can be represented as $AA_5$ and $BB_7$, where $A$ and $B$ are valid digits in their respective bases? 

 Feb 1, 2019
edited by Guest  Feb 1, 2019
 #1
avatar+9675 
+5

1.

Obviously, n7.

 

235236n=2n5+3n4+5n3+2n2+3n+6 

 

This holds true for any n7.

Then, clearly, 2n5+3n4+5n3+2n2+3n1(mod7).

Define P(n)=2n5+3n4+5n3+2n2+3n1.

Consider all possible values of P(n) mod 7 when 0n6,nZ.

P(0)6(mod7)P(1)0(mod7)P(2)4(mod7)P(3)1(mod7)P(4)1(mod7)P(5)1(mod7)P(6)1(mod7)

Generally, P(7k+1)0(mod7)kZ+.

All possible values of n are: 8,15,22,29,36,43,50,57,64,71,78,85,92,99.

So there are 14 possible values of n such that 235236n is divisible by 7.

 Feb 2, 2019
 #2
avatar+9675 
+5

2.

AA5=5A+A=6AA[0,4]AZBB7=7B+B=8BB[0,6]BZ

From this, we know that the required base-10 integer must be divisible by both 6 and 8.

Least common multiple of 6 and 8 = 24.

So the answer is 24.

 

Check: 2410=445=337

 Feb 2, 2019

3 Online Users

avatar